Group subset selection for linear regression
نویسندگان
چکیده
Two fast group subset selection (GSS) algorithms for the linear regression model are proposed in this paper. GSS finds the best combinations of groups up to a specified size minimising the residual sum of squares. This imposes an l0 constraint on the regression coefficients in a group context. It is a combinatorial optimisation problem with NP complexity. To make the exhaustive search very efficient, the GSS algorithms are built on QR decomposition and branch-and-bound techniques. They are suitable formiddle scale problems where finding the most accurate solution is essential. In the application motivating this research, it is natural to require that the coefficients of some of the variables within groups satisfy some constraints (e.g. non-negativity). Therefore the GSS algorithms (optionally) calculate the model coefficient estimates during the exhaustive search in order to screen combinations that do not meet the constraints. The faster of the two GSS algorithms is compared to an extension to the original group Lasso, called the constrained group Lasso (CGL), which is proposed to handle convex constraints and to remove orthogonality requirements on the variables within each group. CGL is a convex relaxation of the GSS problem and hence more straightforward to solve. Although CGL is inferior to GSS in terms of group selection accuracy, it is a fast approximation to GSS if the optimal regularisation parameter can be determined efficiently and, in some cases, it may serve as a screening procedure to reduce the number of groups. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
An Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملFeature subset selection for logistic regression via mixed integer optimization
This paper concerns a method of selecting a subset of features for a logistic regression model. Information criteria, such as the Akaike information criterion and Bayesian information criterion, are employed as a goodness-offit measure. The feature subset selection problem is formulated as a mixed integer linear optimization problem, which can be solved with standard mathematical optimization s...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملSubset selection by Mallows' Cp: A mixed integer programming approach
This paper concerns a method of selecting the best subset of explanatory variables for a linear regression model. Employing Mallows’ Cp as a goodness-of-fit measure, we formulate the subset selection problem as a mixed integer quadratic programming problem. Computational results demonstrate that our method provides the best subset of variables in a few seconds when the number of candidate expla...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 75 شماره
صفحات -
تاریخ انتشار 2014